Overtone-induced dissociation and isomerization dynamics of the hydroxymethyl radical (CH2OH and CD2OH). II. Velocity map imaging studies.

نویسندگان

  • M Ryazanov
  • C Rodrigo
  • H Reisler
چکیده

The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following excitation in the 4ν(1) region (OH stretch overtone, near 13,600 cm(-1)) was studied using sliced velocity map imaging. A new vibrational band near 13,660 cm(-1) arising from interaction with the antisymmetric CH stretch was discovered for CH(2)OH. In CD(2)OH dissociation, D atom products (correlated with CHDO) were detected, providing the first experimental evidence of isomerization in the CH(2)OH ↔ CH(3)O (CD(2)OH ↔ CHD(2)O) system. Analysis of the H (D) fragment kinetic energy distributions shows that the rovibrational state distributions in the formaldehyde cofragments are different for the OH bond fission and isomerization pathways. Isomerization is responsible for 10%-30% of dissociation events in all studied cases, and its contribution depends on the excited vibrational level of the radical. Accurate dissociation energies were determined: D(0)(CH(2)OH → CH(2)O + H) = 10,160 ± 70 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,135 ± 70 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,760 ± 60 cm(-1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overtone-induced dissociation and isomerization dynamics of the hydroxymethyl radical (CH2OH and CD2OH). I. A theoretical study.

The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows tha...

متن کامل

Imaging studies of excited and dissociative States of hydroxymethylene produced in the photodissociation of the hydroxymethyl radical.

Rotational, vibrational, and electronic states of formaldehyde and cis-hydroxymethylene products generated in the photodissociation of the hydroxymethyl radical are investigated by sliced velocity map imaging (SVMI) following excitation of the radical to its 3px and 3pz Rydberg states. SVMI of H and D photofragments is essential in these studies because it allows zooming in on low-velocity regi...

متن کامل

Unimolecular processes in CH2OH below the dissociation barrier: O-H stretch overtone excitation and dissociation.

The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the...

متن کامل

Conformers of Kojic Acid and Their Near-IR-Induced Conversions: Long-Range Intramolecular Vibrational Energy Transfer.

Conformational transformations were investigated for molecules of kojic acid trapped in low-temperature argon and nitrogen matrixes. Two conformers, differing from each other by 120° rotation of the hydroxymethyl (-CH2OH) moiety, were found to be populated in freshly deposited matrixes, prior to any irradiation. Matrixes containing isolated monomers of kojic acid were irradiated with narrowband...

متن کامل

Overtone spectroscopy of H2O clusters in the V(OH) = 2 manifold: infrared-ultraviolet vibrationally mediated dissociation studies.

Spectroscopy and predissociation dynamics of (H2O)2 and Ar-H2O are investigated with vibrationally mediated dissociation (VMD) techniques, wherein upsilon(OH) = 2 overtones of the complexes are selectively prepared with direct infrared pumping, followed by 193 nm photolysis of the excited H2O molecules. As a function of relative laser timing, the photolysis breaks H2O into OH and H fragments ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 8  شماره 

صفحات  -

تاریخ انتشار 2012